Die 7 Slaggate van die beweging Gemiddeldes n bewegende gemiddelde is die gemiddelde prys van 'n sekuriteit oor 'n bepaalde tydperk van die tyd. Ontleders gebruik dikwels bewegende gemiddeldes as 'n analitiese instrument te maak dit makliker om die mark tendense te volg, as sekuriteite te beweeg op en af. Bewegende gemiddeldes kan tendense vas te stel en te meet momentum. dus, kan hulle gebruik word om aan te dui wanneer 'n belegger moet koop of verkoop 'n spesifieke sekuriteit. Beleggers kan ook gebruik bewegende gemiddeldes te steun of weerstand punte te identifiseer ten einde vas te stel wanneer die pryse is geneig om van rigting te verander. Deur die bestudering van historiese handel reekse, is ondersteuning en weerstand punte gevestig waar die prys van 'n sekuriteit omgekeer sy opwaartse of afwaartse neiging in die verlede. Hierdie punte word dan gebruik om te maak, te koop of te verkoop besluite. Ongelukkig, bewegende gemiddeldes is nie perfek instrumente om tendense en hulle bied baie subtiel, maar betekenisvolle, risiko's vir beleggers. Verder het bewegende gemiddeldes nie van toepassing op alle vorme van maatskappye en nywerhede. Sommige van die belangrikste nadele van bewegende gemiddeldes, sluit in: 1. bewegende gemiddeldes te trek tendense van die verlede inligting. Hulle hoef in ag neem veranderinge wat 'n securitys toekomstige prestasie kan beïnvloed, soos nuwe mededingers, hoër of laer vraag na produkte in die bedryf en veranderinge in die bestuurs - struktuur van die maatskappy. 2. Die ideaal is, sal 'n bewegende gemiddelde 'n konsekwente verandering in die prys van 'n sekuriteit, met verloop van tyd te wys. Ongelukkig, bewegende gemiddeldes hoef werk vir al die maatskappye, veral vir diegene in baie wisselvallig nywerhede of diegene wat swaar beïnvloed word deur huidige gebeure. Dit is veral waar vir die oliebedryf en hoogs spekulatiewe nywerhede in die algemeen. 3. bewegende gemiddeldes kan versprei oor enige tydperk. Dit kan egter problematies wees omdat die algemene tendens aansienlik kan verander na gelang van die tydperk gebruik. Korter tydsbestek het meer wisselvalligheid, terwyl langer tydskale minder wisselvalligheid, maar moenie rekening vir nuwe veranderinge in die mark. Beleggers moet versigtig wees wat tyd wat hulle kies, om seker te maak die tendens is duidelik en relevant. 4. 'n on-going debat is of nie meer klem op die mees onlangse dae moet geplaas word in die tydperk. Baie voel dat onlangse data beter weerspieël die rigting van die sekuriteit beweeg, terwyl ander voel dat die gee van 'n paar dae meer gewig as ander, verkeerd vooroordele die tendens. Beleggers wat verskillende metodes vir die berekening van gemiddeldes gebruik kan heeltemal verskillende tendense vestig. (Meer inligting in 'n eenvoudige teen Eksponensiële Moving gemiddeldes.) 5. Baie beleggers argumenteer dat tegniese ontleding is 'n sinlose manier om gedrag mark voorspel. Hulle sê die mark het geen geheue en die verlede is nie 'n aanduiding van die toekoms. Verder is daar 'n aansienlike navorsing om dit te ondersteun. Byvoorbeeld, Roy Nersesian het 'n studie met vyf verskillende strategieë gebruik van bewegende gemiddeldes. Die sukseskoers van elke strategie gewissel tussen 37 en 66. Hierdie navorsing dui daarop dat bewegende gemiddeldes net resultate oplewer omtrent die helfte van die tyd, wat kan maak met behulp van hulle 'n riskante proposisie vir doeltreffende tydsberekening van die aandelemark. 6. Securities wys dikwels 'n sikliese patroon van gedrag. Dit geld ook vir nutsmaatskappye, wat bestendige vraag na hul produk jaar-tot-jaar, maar ervaar 'n sterk seisoenale veranderinge. Hoewel bewegende gemiddeldes kan help gladde uit hierdie tendense, kan hulle ook verberg die feit dat die sekuriteit is trending in 'n ossillasie patroon. (Vir meer inligting, sien 'n ogie oor Momentum.) 7. Die doel van enige tendens is om te voorspel waar die prys van 'n sekuriteit sal wees in die toekoms. As 'n sekuriteit nie trending in enige rigting, nie die geval is dit 'n geleentheid om voordeel te trek uit óf koop of kort verkoop. Die enigste manier om 'n belegger in staat kan wees om wins sou wees om 'n gesofistikeerde, opsies-based strategie wat staatmaak op die oorblywende bestendige prys te implementeer. Die bottom line bewegende gemiddeldes is geag 'n waardevolle analitiese instrument deur baie, maar vir enige instrument om doeltreffend moet jy eers die funksie daarvan te verstaan, wanneer om dit te gebruik en wanneer om dit nie te gebruik nie. Die gevare wat hierin bespreek word aandui wanneer bewegende gemiddeldes nie 'n doeltreffende instrument kan wees, soos wanneer dit gebruik word met vlugtige sekuriteite, en hoe hulle sekere belangrike statistiese inligting, soos sikliese patrone kan miskyk. Dit is ook te betwyfel hoe doeltreffend bewegende gemiddeldes is vir akkuraat aandui prystendense. Gegewe die nadele, kan bewegende gemiddeldes 'n instrument beste gebruik word in samewerking met ander. Op die ou end, sal persoonlike ervaring die uiteindelike aanduiding van hoe doeltreffend hulle werklik is vir jou portefeulje wees. (Vir meer inligting Do Adaptive Bewegende Gemiddeldes lei tot beter resultate) Gladstryking data verwyder ewekansige variasie en programme tendense en sikliese komponente Inherent in die versameling van data geneem met verloop van tyd is 'n vorm van ewekansige variasie. Daar bestaan metodes vir die vermindering van van die kansellasie van die effek as gevolg van ewekansige variasie. 'N dikwels gebruikte tegniek in bedryf is glad. Hierdie tegniek, wanneer dit behoorlik toegepas word, blyk duidelik die onderliggende tendens, seisoenale en sikliese komponente. Daar is twee afsonderlike groepe glad metodes Berekening van gemiddelde metodes Eksponensiële Smoothing Metodes Neem gemiddeldes is die eenvoudigste manier om data te stryk Ons sal eers ondersoek sommige gemiddelde metodes, soos die eenvoudige gemiddeld van al die afgelope data. 'N Bestuurder van 'n pakhuis wil weet hoeveel 'n tipiese verskaffer lewer in 1000 dollar eenhede. Hy / sy neem 'n monster van 12 verskaffers, na willekeur, die verkryging van die volgende resultate: Die berekende gemiddelde of gemiddeld van die data 10. Die bestuurder besluit om dit te gebruik as die skatting vir uitgawes van 'n tipiese verskaffer. Is dit 'n goeie of slegte skat Gemiddelde kwadraat fout is 'n manier om te oordeel hoe goed 'n model is Ons sal bereken die gemiddelde kwadraat fout. Die fout ware bedrag wat minus die beraamde bedrag. Die fout vierkant is die fout hierbo, vierkantig. Die SSE is die som van die gekwadreerde foute. Die MSE is die gemiddeld van die kwadraat foute. MSE lei byvoorbeeld Die uitslae is: Fout en gekwadreerde foute Die raming 10 Die vraag ontstaan: kan ons gebruik maak van die gemiddelde inkomste voorspel as ons vermoed dat 'n tendens 'n blik op die grafiek hieronder toon duidelik dat ons nie dit sou doen. Gemiddeld weeg al verlede Waarnemings ewe In opsomming, ons verklaar dat die eenvoudige gemiddelde of gemiddeld van al verlede waarnemings is net 'n nuttige skatting vir vooruitskatting wanneer daar geen tendense. As daar tendense, gebruik verskillende skattings dat die tendens in ag neem. Die gemiddelde weeg al verlede Waarnemings ewe. Byvoorbeeld, die gemiddelde van die waardes 3, 4, 5 is 4. Ons weet natuurlik dat 'n gemiddelde word bereken deur die toevoeging van al die waardes en die som te deel deur die aantal waardes. Nog 'n manier van berekening van die gemiddelde is deur die byvoeging van elke waarde gedeel deur die aantal waardes, of 3/3 4/3 5/3 1 1,3333 1,6667 4. Die vermenigvuldiger 1/3 is die gewig genoem. In die algemeen: bar frac som links (frac regs) x1 links (frac regs) x2,. ,, Links (frac regs) xn. Die (links (frac regs)) is die gewigte en, natuurlik, hulle vat om 1.In oefen die bewegende gemiddelde sal 'n goeie raming van die gemiddelde van die tydreeks te verskaf indien die gemiddelde konstant of stadig verander. In die geval van 'n konstante gemiddelde, sal die grootste waarde van m die beste raming van die onderliggende gemiddelde gee. 'N langer tydperk waarneming sal gemiddeld uit die gevolge van variasie. Die doel van die verskaffing van 'n kleiner m is om voorsiening te maak die voorspelling om te reageer op 'n verandering in die onderliggende proses. Om te illustreer, stel ons 'n datastel wat veranderinge in die onderliggende gemiddelde van die tydreeks inkorporeer. Die figuur toon die tyd reeks gebruik ter illustrasie saam met die vraag gemiddelde waaruit die reeks was gegenereer. Die gemiddelde begin as 'n konstante by 10. Vanaf die tyd 21, verhoog dit met 'n eenheid in elke tydperk totdat dit die waarde van 20 ten tye 30. bereik Dan weer konstant raak dit. Die data word gesimuleer deur die byvoeging van die gemiddelde, 'n ewekansige geluid van 'n normale verspreiding met 'n nul gemiddelde en standaardafwyking 3. Die resultate van die simulasie is afgerond tot die naaste heelgetal. Die tabel toon die gesimuleerde Waarnemings wat gebruik word vir die voorbeeld. Wanneer ons die tafel gebruik, moet ons onthou dat op enige gegewe tyd, word slegs die afgelope data bekend. Die raming van die model parameter, vir drie verskillende waardes van m word saam met die gemiddelde van die tydreeks in die figuur hieronder. Die figuur toon die bewegende gemiddelde skatting van die gemiddelde by elke keer en nie die voorspelling. Die vooruitskattings sal die bewegende gemiddelde kurwes skuif na regs deur periodes. Een gevolgtrekking is onmiddellik duidelik uit die figuur. Vir al drie skattings loop die bewegende gemiddelde agter die lineêre tendens, met die lag verhoog met m. Die lag is die afstand tussen die model en die raming in die tydsdimensie. As gevolg van die lag, die bewegende gemiddelde onderskat die waarnemings as die gemiddelde is aan die toeneem. Die vooroordeel van die beramer is die verskil op 'n spesifieke tyd in die gemiddelde waarde van die model en die gemiddelde waarde voorspel deur die bewegende gemiddelde. Die vooroordeel wanneer die gemiddelde is aan die toeneem is negatief. Vir 'n dalende gemiddelde, die vooroordeel is positief. Die vertraging in die tyd en die vooroordeel wat in die raming is funksies van m. Hoe groter die waarde van m. hoe groter die omvang van die lag en vooroordeel. Vir 'n voortdurend toenemende reeks met tendens a. die waardes van die lag en vooroordeel van die beramer van die gemiddelde is in die onderstaande vergelykings. Die voorbeeld krommes stem nie ooreen hierdie vergelykings omdat die voorbeeld model is nie voortdurend aan die toeneem, eerder dit begin as 'n konstante, veranderinge aan 'n tendens en dan weer word konstant. Ook die voorbeeld krommes geraak word deur die lawaai. Die bewegende gemiddelde voorspelling van periodes in die toekoms word verteenwoordig deur die verskuiwing van die kromme na regs. Die lag en vooroordeel te verhoog proporsioneel. Die onderstaande vergelykings dui die lag en vooroordeel van 'n voorspelling tydperke in die toekoms in vergelyking met die model parameters. Weereens, hierdie formules is vir 'n tyd reeks met 'n konstante lineêre tendens. Ons moet nie verbaas wees oor die resultaat wees. Die bewegende gemiddelde beramer is gebaseer op die aanname van 'n konstante gemiddelde, en die voorbeeld het 'n liniêre tendens in die gemiddelde tydens 'n gedeelte van die studietydperk. Sedert real time reeks sal selde presies die aannames van enige model te gehoorsaam, moet ons bereid wees om vir sulke resultate. Ons kan ook aflei uit die figuur dat die variasie van die geraas het die grootste effek vir kleiner m. Die skatting is baie meer wisselvallig vir die bewegende gemiddelde van 5 as die bewegende gemiddelde van 20. Ons het die botsende begeertes te m verhoog die effek van variasie te verminder as gevolg van die geraas, en om m te verminder die voorspelling meer reageer op veranderinge aan te bring in die gemiddelde. Die fout is die verskil tussen die werklike data en die geskatte waarde. As die tyd reeks is werklik 'n konstante waarde van die verwagte waarde van die fout is nul en die variansie van die fout bestaan uit 'n term wat 'n funksie is van en 'n tweede termyn wat die variansie van die geraas,. Die eerste kwartaal is die variansie van die gemiddelde geskatte met 'n monster van m waarnemings, die aanvaarding van die data kom uit 'n bevolking met 'n konstante gemiddelde. Hierdie term word tot die minimum beperk deur m so groot as moontlik. 'N Groot m maak die voorspelling nie reageer op 'n verandering in die onderliggende tydreekse. Die voorspelling reageer op veranderinge aan te bring, wil ons m so klein as moontlik (1), maar dit verhoog die foutvariansie. Praktiese vooruitskatting vereis 'n intermediêre waarde. Vooruitskatting met Excel Die vooruitskatting add-in implemente die bewegende gemiddelde formules. Die voorbeeld hieronder toon die analise wat deur die byvoeging in vir die voorbeeld van die data in kolom B. Die eerste 10 waarnemings word geïndekseer -9 deur 0. In vergelyking met die tabel hierbo, is die tydperk indekse verskuif deur -10. Die eerste tien Waarnemings verskaf die begin waardes vir die beraming en gebruik word om die bewegende gemiddelde vir tydperk 0. Die MA (10) kolom (C) toon die berekende bewegende gemiddeldes te bereken. Die bewegende gemiddelde parameter m is in sel C3. Vore (1) kolom (D) toon 'n voorspelling vir een periode na die toekoms. Die voorspelling interval is in sel D3. Wanneer die voorspelling interval verander word na 'n groter aantal van die getalle in die kolom vore geskuif af. Die kolom Fout (1) (e) toon die verskil tussen die waarneming en die voorspelling. Byvoorbeeld, die waarneming by die tyd 1 is 6. Die geskatte waarde uit die bewegende gemiddelde op tydstip 0 is 11.1. Die fout dan is -5,1. Die gemiddeldes en standaardafwykings Gemiddelde Afwyking (MAD) word bereken in selle E6 en E7 respectively.6.2 bewegende gemiddeldes ma 40 elecsales, sodat 5 41 In die tweede kolom van hierdie tabel, 'n bewegende gemiddelde van orde 5 aangetoon, die verskaffing van 'n skatting van die tendens-siklus. Die eerste waarde in hierdie kolom is die gemiddeld van die eerste vyf Waarnemings (1989-1993) die tweede waarde in die 5-MA kolom is die gemiddeld van die waardes 1990-1994 en so aan. Elke waarde in die 5-MA kolom is die gemiddeld van die waarnemings in die tydperk van vyf jaar gesentreer op die ooreenstemmende jaar. Daar is geen waardes vir die eerste twee jaar of laaste twee jaar, want ons hoef nie twee waarnemings aan weerskante. In die formule hierbo, kolom 5-MA bevat die waardes van hoed met K2. Om te sien wat die tendens-siklus skatting lyk, stip ons dit saam met die oorspronklike data in figuur 6.7. plot 40 elecsales, hoof quotResidential elektrisiteit salesquot, ylab quotGWhquot. XLab quotYearquot 41 lyne 40 MA 40 elecsales, 5 41. Kol quotredquot 41 Let op hoe die tendens (in rooi) is gladder as die oorspronklike data en vang die grootste beweging van die tydreeks sonder al die geringe fluktuasies. Die bewegende gemiddelde metode nie skattings van T toelaat waar t is baie naby aan die einde van die reeks vandaar die rooi lyn nie uit te brei na die kante van die grafiek aan weerskante. Later sal ons meer gesofistikeerde metodes van die tendens-siklus skatting wat doen toelaat skattings naby die eindpunte gebruik. Die einde van die bewegende gemiddelde bepaal die gladheid van die tendens-siklus skatting. In die algemeen, 'n groter orde beteken 'n gladder kurwe. Die volgende grafiek toon die effek van die verandering van die orde van die bewegende gemiddelde vir die residensiële verkope elektrisiteit data. Eenvoudige bewegende gemiddeldes soos hierdie is gewoonlik van vreemde orde (bv 3, 5, 7, ens) Dit is sodat hulle is simmetries: in 'n bewegende gemiddelde van orde m2k1, daar is k vroeër waarnemings, k later waarnemings en die Midde-waarneming wat gemiddeld. Maar as m selfs was, sou dit nie meer simmetriese wees. Bewegende gemiddeldes van bewegende gemiddeldes Dit is moontlik om 'n bewegende gemiddelde van toepassing op 'n bewegende gemiddelde. Een van die redes hiervoor is om 'n nog-orde bewegende gemiddelde simmetriese maak. Byvoorbeeld, kan ons 'n bewegende gemiddelde van orde 4 neem, en dan nog 'n bewegende gemiddelde van orde 2 van toepassing is op die resultate. In Tabel 6.2, is dit gedoen en vir die eerste paar jaar van die Australiese kwartaallikse bier produksie data. BEER2 LT venster 40 ausbeer, begin 1992 41 ma4 LT ma 40 BEER2, sodat 4. sentrum ONWAAR 41 ma2x4 LT ma 40 BEER2, sodat 4. sentrum WAAR 41 Die notasie 2times4-MA in die laaste kolom beteken 'n 4-MA gevolg deur 'n 2-MA. Die waardes in die laaste kolom word verkry deur die neem van 'n bewegende gemiddelde van orde 2 van die waardes in die vorige kolom. Byvoorbeeld, die eerste twee waardes in die 4-MA kolom is 451,2 (443.410.420.532) / 4 en 448,8 (410.420.532.433) / 4. Die eerste waarde in die 2times4-MA kolom is die gemiddeld van die twee: 450,0 (451.2448.8) / 2. Wanneer 'n 2-MA volg op 'n bewegende gemiddelde van al orde (soos 4), is dit bekend as 'n gesentreerde bewegende gemiddelde van orde 4. Dit is omdat die resultate is nou simmetriese. Om te sien dat dit die geval is, kan ons die 2times4-MA soos volg skryf: begin hoed amp frac Bigfrac (J J J J) frac (J J J J) Big amp frac y frac14y frac14y frac14y frac18y. Uiteindelik gaan dit nou 'n geweegde gemiddelde van waarnemings, maar dit is simmetriese. Ander kombinasies van bewegende gemiddeldes is ook moontlik. Byvoorbeeld 'n 3times3-MA word dikwels gebruik, en bestaan uit 'n bewegende gemiddelde van orde 3 gevolg deur 'n ander bewegende gemiddelde van orde 3. In die algemeen, moet 'n gelyke orde MA word gevolg deur 'n nog bevel MA dit simmetriese maak. Net so moet 'n vreemde orde MA word gevolg deur 'n vreemde orde MA. Skatte van die tendens-siklus met seisoenale data Die mees algemene gebruik van gesentreer bewegende gemiddeldes is in die beraming van die tendens-siklus van seisoenale data. Oorweeg die 2times4-MA: hoed frac y frac14y frac14y frac14y frac18y. Wanneer dit toegepas word om kwartaalliks data, word elke kwartaal van die jaar gegee gelyke gewig as die eerste en laaste terme van toepassing op dieselfde kwartaal in agtereenvolgende jare. Gevolglik sal die seisoenale variasie word gemiddeld uit en die gevolglike waardes van hoed t sal min of oorblywende geen seisoenale variasie het. 'N soortgelyke effek sal verkry word met behulp van 'n 2times 8-MA of 'n 2times 12-MA. In die algemeen, 'n 2times m-MA is gelykstaande aan 'n geweegde bewegende gemiddelde van orde M1 met alle waarnemings wat gewig 1 / m, behalwe vir die eerste en laaste terme wat gewigte neem 1 / (2 miljoen). So as die seisoenale tydperk is selfs en orde m, gebruik 'n 2times m-MA aan die tendens-siklus te skat. As die seisoenale tydperk is vreemd en orde m, gebruik 'n m-MA aan die tendens siklus skat. In die besonder, kan 'n 2times 12-MA gebruik word om die tendens-siklus van maandelikse data te skat en 'n 7-MA gebruik kan word om die tendens-siklus van die daaglikse data te skat. Ander keuses vir die einde van die MA sal gewoonlik lei tot tendens-siklus skattings besmet deur die seisoenaliteit in die data. Voorbeeld 6.2 Elektriese toerusting vervaardiging Figuur 6.9 toon 'n 2times12-MA toegepas op die elektriese toerusting bestellings indeks. Let daarop dat die gladde lyn toon geen seisoenaliteit dit is byna dieselfde as die tendens-siklus word in Figuur 6.2 wat na raming met behulp van 'n veel meer gesofistikeerde metode as bewegende gemiddeldes. Enige ander keuse vir die einde van die bewegende gemiddelde (behalwe vir 24, 36, ens) sou gelei tot 'n gladde lyn wat 'n paar seisoenale skommelinge toon. plot 40 elecequip, ylab quotNew bestellings indexquot. Kol quotgrayquot, hoof quotElectrical toerusting vervaardiging (Eurogebied) quot 41 lyne 40 MA 40 elecequip, sodat 12 41. Kol quotredquot 41 Geweegde bewegende gemiddeldes Kombinasies van bewegende gemiddeldes lei tot geweegde bewegende gemiddeldes. Byvoorbeeld, die 2x4-MA hierbo bespreek is gelykstaande aan 'n geweegde 5-MA met gewigte deur frac, frac, frac, frac, frac. In die algemeen kan 'n geweegde m-MA geskryf word as hoed t som k AJ y, waar k (m-1) / 2 en die gewigte word deur 'n, kolle, AK. Dit is belangrik dat die gewigte al som tot een en dat hulle simmetriese sodat 'n aj. Die eenvoudige m-MA is 'n spesiale geval waar al die gewigte is gelyk aan 1 / m. 'N Groot voordeel van geweegde bewegende gemiddeldes is dat hulle toegee n gladder skatting van die tendens-siklus. In plaas van waarnemings betree en verlaat die berekening op volle gewig, is hul gewigte stadig toegeneem en dan stadig afgeneem wat lei tot 'n gladder kurwe. Sommige spesifieke stelle gewigte is wyd gebruik word. Sommige van hierdie word in Tabel 6.3.8.4 Moving gemiddelde modelle eerder as om verby waardes van die voorspelling veranderlike in 'n regressie, 'n bewegende gemiddelde model gebruik afgelope voorspelling foute in 'n regressie-agtige model. y c et theta e theta e kolle theta e, waar et is wit geraas. Ons noem dit 'n MA (Q) model. Natuurlik, ons het nie die waardes van et waarneem, so dit is nie regtig regressie in die gewone sin. Let daarop dat elke waarde van yt gesien kan word as 'n geweegde bewegende gemiddelde van die afgelope paar voorspel foute. Maar bewegende gemiddelde modelle moet nie verwar word met bewegende gemiddelde smoothing ons in Hoofstuk 6. 'n bewegende gemiddelde model bespreek word gebruik vir die voorspelling van toekomstige waardes, terwyl bewegende gemiddelde smoothing word gebruik vir die bepaling van die tendens-siklus van verlede waardes wees. Figuur 8.6: Twee voorbeelde van data uit bewegende gemiddelde modelle met verskillende parameters. Links: MA (1) met y t 20e t 0.8e t-1. Regs: MA (2) met y t e t-e t-1 0.8e t-2. In beide gevalle, is e t normaalverdeelde wit geraas met gemiddelde nul en variansie een. Figuur 8.6 toon 'n mate van data uit 'n MA (1) model en 'n MA (2) model. Die verandering van die parameters theta1, kolle, thetaq resultate in verskillende tyd reeks patrone. Soos met outoregressiemodelle, sal die afwyking van die term fout et net verander die skaal van die reeks, nie die patrone. Dit is moontlik om 'n stilstaande AR (p) model as 'n MA (infty) model skryf. Byvoorbeeld, met behulp van herhaalde vervanging, kan ons hierdie bewys vir 'n AR (1) model: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext einde verstande -1 Dit phi1 Dit 1, sal die waarde van phi1k kleiner te kry as k groter word. So uiteindelik kry ons yt et phi1 e phi12 e phi13 e cdots, 'n MA (infty) proses. Die omgekeerde gevolg het as ons 'n paar beperkinge op te lê op die MA parameters. Toe die MA-model is omkeerbaar genoem. Dit wil sê, dat ons 'n omkeerbare MA (Q) proses as 'n AR (infty) proses kan skryf. Omkeerbare modelle is nie net om ons in staat stel om van MA modelle om modelle AR. Hulle het ook 'n paar wiskundige eienskappe wat maak dit makliker om te gebruik in die praktyk. Die inverteerbaarheid beperkings is soortgelyk aan die stasionariteit beperkings. Vir 'n MA (1) model: -1lttheta1lt1. Vir 'n MA (2) model: -1lttheta2lt1, theta2theta1 GT-1, theta1 - theta2 Dit 1. Meer ingewikkelde voorwaardes hou vir qge3. Weereens, sal R sorg van hierdie beperkings te neem wanneer die beraming van die modelle.
No comments:
Post a Comment